扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍了Python如何确定多项式拟合/回归的阶数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
成都创新互联公司专注于企业网络营销推广、网站重做改版、扶绥网站定制设计、自适应品牌网站建设、H5网站设计、购物商城网站建设、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为扶绥等各大城市提供网站开发制作服务。通过 1至10 阶来拟合对比 均方误差及R评分,可以确定最优的“大阶数”。
import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression,Perceptron from sklearn.metrics import mean_squared_error,r2_score from sklearn.model_selection import train_test_split X = np.array([-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]).reshape(-1, 1) y = np.array(2*(X**4) + X**2 + 9*X + 2) #y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) rmses = [] degrees = np.arange(1, 10) min_rmse, min_deg,score = 1e10, 0 ,0 for deg in degrees: # 生成多项式特征集(如根据degree=3 ,生成 [[x,x**2,x**3]] ) poly = PolynomialFeatures(degree=deg, include_bias=False) x_train_poly = poly.fit_transform(x_train) # 多项式拟合 poly_reg = LinearRegression() poly_reg.fit(x_train_poly, y_train) #print(poly_reg.coef_,poly_reg.intercept_) #系数及常数 # 测试集比较 x_test_poly = poly.fit_transform(x_test) y_test_pred = poly_reg.predict(x_test_poly) #mean_squared_error(y_true, y_pred) #均方误差回归损失,越小越好。 poly_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred)) rmses.append(poly_rmse) # r2 范围[0,1],R2越接近1拟合越好。 r2score = r2_score(y_test, y_test_pred) # degree交叉验证 if min_rmse > poly_rmse: min_rmse = poly_rmse min_deg = deg score = r2score print('degree = %s, RMSE = %.2f ,r2_score = %.2f' % (deg, poly_rmse,r2score)) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(degrees, rmses) ax.set_yscale('log') ax.set_xlabel('Degree') ax.set_ylabel('RMSE') ax.set_title('Best degree = %s, RMSE = %.2f, r2_score = %.2f' %(min_deg, min_rmse,score)) plt.show()
因为因变量 Y = 2*(X**4) + X**2 + 9*X + 2 ,自变量和因变量是完整的公式,看图很明显,degree >=4 的都符合,拟合函数都正确。(RMSE 最小,R平方非负且接近于1,则模型最好)
如果将 Y 值改为如下:
y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)
degree=3 是最好的,且 r 平方也最接近于1(注意:如果 R 平方为负数,则不准确,需再次测试。因样本数据较少,可能也会判断错误)。
感谢你能够认真阅读完这篇文章,希望小编分享的“Python如何确定多项式拟合/回归的阶数”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流